\(\int \sin (a+b x) \sin ^2(c+d x) \, dx\) [193]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 15, antiderivative size = 62 \[ \int \sin (a+b x) \sin ^2(c+d x) \, dx=-\frac {\cos (a+b x)}{2 b}+\frac {\cos (a-2 c+(b-2 d) x)}{4 (b-2 d)}+\frac {\cos (a+2 c+(b+2 d) x)}{4 (b+2 d)} \]

[Out]

-1/2*cos(b*x+a)/b+1/4*cos(a-2*c+(b-2*d)*x)/(b-2*d)+1/4*cos(a+2*c+(b+2*d)*x)/(b+2*d)

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 62, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {4665, 2718} \[ \int \sin (a+b x) \sin ^2(c+d x) \, dx=\frac {\cos (a+x (b-2 d)-2 c)}{4 (b-2 d)}+\frac {\cos (a+x (b+2 d)+2 c)}{4 (b+2 d)}-\frac {\cos (a+b x)}{2 b} \]

[In]

Int[Sin[a + b*x]*Sin[c + d*x]^2,x]

[Out]

-1/2*Cos[a + b*x]/b + Cos[a - 2*c + (b - 2*d)*x]/(4*(b - 2*d)) + Cos[a + 2*c + (b + 2*d)*x]/(4*(b + 2*d))

Rule 2718

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 4665

Int[Sin[v_]^(p_.)*Sin[w_]^(q_.), x_Symbol] :> Int[ExpandTrigReduce[Sin[v]^p*Sin[w]^q, x], x] /; ((PolynomialQ[
v, x] && PolynomialQ[w, x]) || (BinomialQ[{v, w}, x] && IndependentQ[Cancel[v/w], x])) && IGtQ[p, 0] && IGtQ[q
, 0]

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {1}{2} \sin (a+b x)-\frac {1}{4} \sin (a-2 c+(b-2 d) x)-\frac {1}{4} \sin (a+2 c+(b+2 d) x)\right ) \, dx \\ & = -\left (\frac {1}{4} \int \sin (a-2 c+(b-2 d) x) \, dx\right )-\frac {1}{4} \int \sin (a+2 c+(b+2 d) x) \, dx+\frac {1}{2} \int \sin (a+b x) \, dx \\ & = -\frac {\cos (a+b x)}{2 b}+\frac {\cos (a-2 c+(b-2 d) x)}{4 (b-2 d)}+\frac {\cos (a+2 c+(b+2 d) x)}{4 (b+2 d)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.81 (sec) , antiderivative size = 69, normalized size of antiderivative = 1.11 \[ \int \sin (a+b x) \sin ^2(c+d x) \, dx=\frac {1}{4} \left (-\frac {2 \cos (a) \cos (b x)}{b}+\frac {\cos (a-2 c+b x-2 d x)}{b-2 d}+\frac {\cos (a+2 c+b x+2 d x)}{b+2 d}+\frac {2 \sin (a) \sin (b x)}{b}\right ) \]

[In]

Integrate[Sin[a + b*x]*Sin[c + d*x]^2,x]

[Out]

((-2*Cos[a]*Cos[b*x])/b + Cos[a - 2*c + b*x - 2*d*x]/(b - 2*d) + Cos[a + 2*c + b*x + 2*d*x]/(b + 2*d) + (2*Sin
[a]*Sin[b*x])/b)/4

Maple [A] (verified)

Time = 0.53 (sec) , antiderivative size = 57, normalized size of antiderivative = 0.92

method result size
default \(-\frac {\cos \left (x b +a \right )}{2 b}+\frac {\cos \left (a -2 c +\left (b -2 d \right ) x \right )}{4 b -8 d}+\frac {\cos \left (a +2 c +\left (b +2 d \right ) x \right )}{4 b +8 d}\) \(57\)
risch \(-\frac {\cos \left (x b +a \right )}{2 b}+\frac {\cos \left (x b -2 d x +a -2 c \right )}{4 b -8 d}+\frac {\cos \left (x b +2 d x +a +2 c \right )}{4 b +8 d}\) \(57\)
parallelrisch \(\frac {b \left (b +2 d \right ) \cos \left (a -2 c +\left (b -2 d \right ) x \right )+b \left (b -2 d \right ) \cos \left (a +2 c +\left (b +2 d \right ) x \right )+\left (-2 b^{2}+8 d^{2}\right ) \cos \left (x b +a \right )-8 d^{2}}{4 b^{3}-16 b \,d^{2}}\) \(80\)
norman \(\frac {\frac {4 d^{2}}{b \left (b^{2}-4 d^{2}\right )}+\frac {4 d^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{b \left (b^{2}-4 d^{2}\right )}+\frac {8 d \tan \left (\frac {a}{2}+\frac {x b}{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{b^{2}-4 d^{2}}-\frac {8 d \tan \left (\frac {a}{2}+\frac {x b}{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{b^{2}-4 d^{2}}+\frac {4 b \tan \left (\frac {a}{2}+\frac {x b}{2}\right )^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{b^{2}-4 d^{2}}+\frac {2 \left (-2 b^{2}+4 d^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{b \left (b^{2}-4 d^{2}\right )}}{\left (1+\tan \left (\frac {a}{2}+\frac {x b}{2}\right )^{2}\right ) \left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{2}}\) \(222\)

[In]

int(sin(b*x+a)*sin(d*x+c)^2,x,method=_RETURNVERBOSE)

[Out]

-1/2*cos(b*x+a)/b+1/4*cos(a-2*c+(b-2*d)*x)/(b-2*d)+1/4*cos(a+2*c+(b+2*d)*x)/(b+2*d)

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 71, normalized size of antiderivative = 1.15 \[ \int \sin (a+b x) \sin ^2(c+d x) \, dx=\frac {b^{2} \cos \left (b x + a\right ) \cos \left (d x + c\right )^{2} + 2 \, b d \cos \left (d x + c\right ) \sin \left (b x + a\right ) \sin \left (d x + c\right ) - {\left (b^{2} - 2 \, d^{2}\right )} \cos \left (b x + a\right )}{b^{3} - 4 \, b d^{2}} \]

[In]

integrate(sin(b*x+a)*sin(d*x+c)^2,x, algorithm="fricas")

[Out]

(b^2*cos(b*x + a)*cos(d*x + c)^2 + 2*b*d*cos(d*x + c)*sin(b*x + a)*sin(d*x + c) - (b^2 - 2*d^2)*cos(b*x + a))/
(b^3 - 4*b*d^2)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 408 vs. \(2 (49) = 98\).

Time = 0.67 (sec) , antiderivative size = 408, normalized size of antiderivative = 6.58 \[ \int \sin (a+b x) \sin ^2(c+d x) \, dx=\begin {cases} x \sin {\left (a \right )} \sin ^{2}{\left (c \right )} & \text {for}\: b = 0 \wedge d = 0 \\\left (\frac {x \sin ^{2}{\left (c + d x \right )}}{2} + \frac {x \cos ^{2}{\left (c + d x \right )}}{2} - \frac {\sin {\left (c + d x \right )} \cos {\left (c + d x \right )}}{2 d}\right ) \sin {\left (a \right )} & \text {for}\: b = 0 \\\frac {x \sin {\left (a - 2 d x \right )} \sin ^{2}{\left (c + d x \right )}}{4} - \frac {x \sin {\left (a - 2 d x \right )} \cos ^{2}{\left (c + d x \right )}}{4} - \frac {x \sin {\left (c + d x \right )} \cos {\left (a - 2 d x \right )} \cos {\left (c + d x \right )}}{2} - \frac {3 \sin {\left (a - 2 d x \right )} \sin {\left (c + d x \right )} \cos {\left (c + d x \right )}}{4 d} + \frac {\cos {\left (a - 2 d x \right )} \cos ^{2}{\left (c + d x \right )}}{2 d} & \text {for}\: b = - 2 d \\\frac {x \sin {\left (a + 2 d x \right )} \sin ^{2}{\left (c + d x \right )}}{4} - \frac {x \sin {\left (a + 2 d x \right )} \cos ^{2}{\left (c + d x \right )}}{4} + \frac {x \sin {\left (c + d x \right )} \cos {\left (a + 2 d x \right )} \cos {\left (c + d x \right )}}{2} - \frac {3 \sin {\left (a + 2 d x \right )} \sin {\left (c + d x \right )} \cos {\left (c + d x \right )}}{4 d} - \frac {\cos {\left (a + 2 d x \right )} \cos ^{2}{\left (c + d x \right )}}{2 d} & \text {for}\: b = 2 d \\- \frac {b^{2} \sin ^{2}{\left (c + d x \right )} \cos {\left (a + b x \right )}}{b^{3} - 4 b d^{2}} + \frac {2 b d \sin {\left (a + b x \right )} \sin {\left (c + d x \right )} \cos {\left (c + d x \right )}}{b^{3} - 4 b d^{2}} + \frac {2 d^{2} \sin ^{2}{\left (c + d x \right )} \cos {\left (a + b x \right )}}{b^{3} - 4 b d^{2}} + \frac {2 d^{2} \cos {\left (a + b x \right )} \cos ^{2}{\left (c + d x \right )}}{b^{3} - 4 b d^{2}} & \text {otherwise} \end {cases} \]

[In]

integrate(sin(b*x+a)*sin(d*x+c)**2,x)

[Out]

Piecewise((x*sin(a)*sin(c)**2, Eq(b, 0) & Eq(d, 0)), ((x*sin(c + d*x)**2/2 + x*cos(c + d*x)**2/2 - sin(c + d*x
)*cos(c + d*x)/(2*d))*sin(a), Eq(b, 0)), (x*sin(a - 2*d*x)*sin(c + d*x)**2/4 - x*sin(a - 2*d*x)*cos(c + d*x)**
2/4 - x*sin(c + d*x)*cos(a - 2*d*x)*cos(c + d*x)/2 - 3*sin(a - 2*d*x)*sin(c + d*x)*cos(c + d*x)/(4*d) + cos(a
- 2*d*x)*cos(c + d*x)**2/(2*d), Eq(b, -2*d)), (x*sin(a + 2*d*x)*sin(c + d*x)**2/4 - x*sin(a + 2*d*x)*cos(c + d
*x)**2/4 + x*sin(c + d*x)*cos(a + 2*d*x)*cos(c + d*x)/2 - 3*sin(a + 2*d*x)*sin(c + d*x)*cos(c + d*x)/(4*d) - c
os(a + 2*d*x)*cos(c + d*x)**2/(2*d), Eq(b, 2*d)), (-b**2*sin(c + d*x)**2*cos(a + b*x)/(b**3 - 4*b*d**2) + 2*b*
d*sin(a + b*x)*sin(c + d*x)*cos(c + d*x)/(b**3 - 4*b*d**2) + 2*d**2*sin(c + d*x)**2*cos(a + b*x)/(b**3 - 4*b*d
**2) + 2*d**2*cos(a + b*x)*cos(c + d*x)**2/(b**3 - 4*b*d**2), True))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 414 vs. \(2 (56) = 112\).

Time = 0.25 (sec) , antiderivative size = 414, normalized size of antiderivative = 6.68 \[ \int \sin (a+b x) \sin ^2(c+d x) \, dx=\frac {{\left (b^{2} \cos \left (2 \, c\right ) - 2 \, b d \cos \left (2 \, c\right )\right )} \cos \left ({\left (b + 2 \, d\right )} x + a + 4 \, c\right ) + {\left (b^{2} \cos \left (2 \, c\right ) - 2 \, b d \cos \left (2 \, c\right )\right )} \cos \left ({\left (b + 2 \, d\right )} x + a\right ) + {\left (b^{2} \cos \left (2 \, c\right ) + 2 \, b d \cos \left (2 \, c\right )\right )} \cos \left (-{\left (b - 2 \, d\right )} x - a + 4 \, c\right ) + {\left (b^{2} \cos \left (2 \, c\right ) + 2 \, b d \cos \left (2 \, c\right )\right )} \cos \left (-{\left (b - 2 \, d\right )} x - a\right ) - 2 \, {\left (b^{2} \cos \left (2 \, c\right ) - 4 \, d^{2} \cos \left (2 \, c\right )\right )} \cos \left (b x + a + 2 \, c\right ) - 2 \, {\left (b^{2} \cos \left (2 \, c\right ) - 4 \, d^{2} \cos \left (2 \, c\right )\right )} \cos \left (b x + a - 2 \, c\right ) + {\left (b^{2} \sin \left (2 \, c\right ) - 2 \, b d \sin \left (2 \, c\right )\right )} \sin \left ({\left (b + 2 \, d\right )} x + a + 4 \, c\right ) - {\left (b^{2} \sin \left (2 \, c\right ) - 2 \, b d \sin \left (2 \, c\right )\right )} \sin \left ({\left (b + 2 \, d\right )} x + a\right ) + {\left (b^{2} \sin \left (2 \, c\right ) + 2 \, b d \sin \left (2 \, c\right )\right )} \sin \left (-{\left (b - 2 \, d\right )} x - a + 4 \, c\right ) - {\left (b^{2} \sin \left (2 \, c\right ) + 2 \, b d \sin \left (2 \, c\right )\right )} \sin \left (-{\left (b - 2 \, d\right )} x - a\right ) - 2 \, {\left (b^{2} \sin \left (2 \, c\right ) - 4 \, d^{2} \sin \left (2 \, c\right )\right )} \sin \left (b x + a + 2 \, c\right ) + 2 \, {\left (b^{2} \sin \left (2 \, c\right ) - 4 \, d^{2} \sin \left (2 \, c\right )\right )} \sin \left (b x + a - 2 \, c\right )}{8 \, {\left (b^{3} \cos \left (2 \, c\right )^{2} + b^{3} \sin \left (2 \, c\right )^{2} - 4 \, {\left (b \cos \left (2 \, c\right )^{2} + b \sin \left (2 \, c\right )^{2}\right )} d^{2}\right )}} \]

[In]

integrate(sin(b*x+a)*sin(d*x+c)^2,x, algorithm="maxima")

[Out]

1/8*((b^2*cos(2*c) - 2*b*d*cos(2*c))*cos((b + 2*d)*x + a + 4*c) + (b^2*cos(2*c) - 2*b*d*cos(2*c))*cos((b + 2*d
)*x + a) + (b^2*cos(2*c) + 2*b*d*cos(2*c))*cos(-(b - 2*d)*x - a + 4*c) + (b^2*cos(2*c) + 2*b*d*cos(2*c))*cos(-
(b - 2*d)*x - a) - 2*(b^2*cos(2*c) - 4*d^2*cos(2*c))*cos(b*x + a + 2*c) - 2*(b^2*cos(2*c) - 4*d^2*cos(2*c))*co
s(b*x + a - 2*c) + (b^2*sin(2*c) - 2*b*d*sin(2*c))*sin((b + 2*d)*x + a + 4*c) - (b^2*sin(2*c) - 2*b*d*sin(2*c)
)*sin((b + 2*d)*x + a) + (b^2*sin(2*c) + 2*b*d*sin(2*c))*sin(-(b - 2*d)*x - a + 4*c) - (b^2*sin(2*c) + 2*b*d*s
in(2*c))*sin(-(b - 2*d)*x - a) - 2*(b^2*sin(2*c) - 4*d^2*sin(2*c))*sin(b*x + a + 2*c) + 2*(b^2*sin(2*c) - 4*d^
2*sin(2*c))*sin(b*x + a - 2*c))/(b^3*cos(2*c)^2 + b^3*sin(2*c)^2 - 4*(b*cos(2*c)^2 + b*sin(2*c)^2)*d^2)

Giac [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.90 \[ \int \sin (a+b x) \sin ^2(c+d x) \, dx=\frac {\cos \left (b x + 2 \, d x + a + 2 \, c\right )}{4 \, {\left (b + 2 \, d\right )}} + \frac {\cos \left (b x - 2 \, d x + a - 2 \, c\right )}{4 \, {\left (b - 2 \, d\right )}} - \frac {\cos \left (b x + a\right )}{2 \, b} \]

[In]

integrate(sin(b*x+a)*sin(d*x+c)^2,x, algorithm="giac")

[Out]

1/4*cos(b*x + 2*d*x + a + 2*c)/(b + 2*d) + 1/4*cos(b*x - 2*d*x + a - 2*c)/(b - 2*d) - 1/2*cos(b*x + a)/b

Mupad [B] (verification not implemented)

Time = 20.80 (sec) , antiderivative size = 98, normalized size of antiderivative = 1.58 \[ \int \sin (a+b x) \sin ^2(c+d x) \, dx=-\frac {d\,\left (2\,b\,\cos \left (a-2\,c+b\,x-2\,d\,x\right )-2\,b\,\cos \left (a+2\,c+b\,x+2\,d\,x\right )\right )+b^2\,\cos \left (a-2\,c+b\,x-2\,d\,x\right )+b^2\,\cos \left (a+2\,c+b\,x+2\,d\,x\right )}{16\,b\,d^2-4\,b^3}-\frac {\cos \left (a+b\,x\right )}{2\,b} \]

[In]

int(sin(a + b*x)*sin(c + d*x)^2,x)

[Out]

- (d*(2*b*cos(a - 2*c + b*x - 2*d*x) - 2*b*cos(a + 2*c + b*x + 2*d*x)) + b^2*cos(a - 2*c + b*x - 2*d*x) + b^2*
cos(a + 2*c + b*x + 2*d*x))/(16*b*d^2 - 4*b^3) - cos(a + b*x)/(2*b)